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aspects on simulations of a
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Abstract The influence of computational aspects on simulation results is quantitatively
investigated for the specific case of a turbulent piloted jet diffusion flame (Sandia Flame D). It is
llustrated that, with a fixed turbulence and chemistry model, the results can heavily depend on the
numerical aspects. The influence of inlet boundary conditions has already been discussed in an
earlier paper. In this work, attention is focused onto the order of accuracy of the spatial
discretization in the numerical scheme and onto the position of the outlet boundary. It is stressed
that the purpose is not to judge the quality of the applied models, but to illustrate the possible
impact of numerical influence factors. The conclusion is a warning message and a demonstration
that all numerical aspects must be completely described when calculation results are presented.

1. Introduction

In many papers, results of numerical simulations are compared with the
experimental data. Often, all differences between the computed and measured
values are blamed on the employed models. However, as pointed out by Pope
(2000), there may be many different contributions to the observed
discrepancies.

First, there is an uncertainty in the experimental data. Only when results are
compared with DNS reference data, this contribution to the global discrepancy
can be ignored (although there may still be some error due to averaging or lack
of statistical accuracy). Secondly there may be differences in the boundary
conditions of the experiment and simulation. Next, the governing equations
must be solved. A numerical error is inevitably introduced. Finally, there is the
inaccuracy of the used models. This paper mainly focuses on the influence of
boundary conditions and numerical accuracy.

For that purpose, the numerical simulation of a turbulent piloted jet
diffusion flame is studied (Sandia Flame D) (Barlow and Frank, 1998). The
turbulence model is the standard 2 — & model (Jones and Launder, 1972), with
an adjusted model constant ¢,» = 1.8. A pre-assumed S-probability density
function (PDF) approach is used within the conserved scalar framework.
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Standard equations and model constants are used. The chemistry model is a
simplified version of the constrained equilibrium model (Bilger and Starner,
1983), as described in Merci et al. (2001). All these models are fixed, so that the
differences in numerical results are independent of the model choices.

2. Model description
The standard % — & model is used as the turbulence model. The turbulent
stresses in the RANS equations are modelled as:

~ 2
= Py = 2wS; — 5 pkd; M
where the turbulent or “eddy” viscosity is defined as:
Mt = peuke, 2)

with the model constant ¢, = 0.09. Favre averages are used. The turbulent
time scale 7; is defined in a high-Reynolds formulation (standard):

Tt = . 3
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The steady-state transport equations for the turbulence quantities are (Merci
et al.,, 2001):
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with the model constants o, =1, ¢g1 =1.44, ¢, =1.8, c.3=1and o, =1.3. The
value ¢z =1.8 differs from the standard value 1.92 (since it is claimed in
http://www.ca.sandia.gov/tdf/Workshop/Submodels.html that this ensures the
correct spreading rate for the studied flame). However, this point is discussed
later in this paper.

For the modelling of turbulence-chemistry interaction, a pre-assumed 3-PDF
is used, with the conserved scalar approach. The steady-state transport
equations for the mean mixture fraction and its variance are (Merci ef al., 2001):
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with standard values for the model constants: oy = 0, = 0.7 and ¢, = 2.



A simplified version of the constrained equilibrium (Bilger and Starner,
1983) is used as chemistry model (Merci et al, 2001). Thermochemical
properties are tabulated @ priori and looked up during the calculations, with the
program FLAME (Merci et al., 2001).

3. Experimental setup

The geometry of the test case (Sandia “Flame D”) studied experimentally at
Sandia National Laboratories and Darmstadt University of Technology, is
completely described by Barlow and Frank (1998). A central fuel jet —
75 per cent air and 25 per cent methane by volume — is surrounded by a coflow
air stream. The unconfined flame is stabilized by a high-temperature pilot
stream (around 1,900 K) between the jet and the coflow. The bulk velocities of
the central jet, pilot stream and coflow air are 49.6, 11.4 and 0.9m/s,
respectively. The Reynolds number of the central fuel jet, based on mean
velocity Uy, and central nozzle diameter D, is Re = pUy, D,/ = 22, 400.

4. Computational grid and boundary conditions

The basic computational grid (140D, X 25D,)) consists of 113 X 89 nodes. The
central fuel jet radially contains 16 cells and the pilot stream 24 cells. Stretching
1s applied towards the outer boundary. Axially, the first cell size is equal to the
radial size of the cells in the fuel jet and stretching is applied towards the outlet.
Results are also presented for another grid (80D, X 25D,,), in which the outlet
boundary is closer to the nozzle exit. Grid independence of the results is
investigated by refining the basic grid (225 X 177 grid points).

At the inlet boundary, the velocity components and turbulent kinetic energy
are prescribed as measured at Darmstadt University of Technology (http://
www.ca.sandia.gov/tdf/Workshop/Submodels.html). Static pressure is
extrapolated from the flow field. For the central fuel jet, the mixture fraction
is set to ¢ = 1, while in the coflow air stream ¢ = 0. The pilot stream has a
mixture fraction &= 0.27 (see http://www.ca.sandia.gov/tdf/Workshop/
Submodels.html). The mixture fraction variance is set equal to zero at the
inlet. Finally, the dissipation rate & must be determined. A complete discussion
on this aspect is found in the work of Merci et al. (2002), where two acceptable
methods are obtained. In the first method, the measured profiles for the mean
velocity components and turbulent kinetic energy are imposed, and the &
transport equation (4) is solved under the assumption of fully developed flow
conditions (axial derivatives set to zero). At solid boundaries, ¢ is determined

as.
2
6y =22 (ﬂ) , ®)

with » the unity vector normal to the boundary. The required time for the
additional computation with this method is short, since the equation has to be
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solved only on one grid line. The advantages are that the method can easily be
applied to any inlet geometry (be it a central jet, an annulus flow or a coflow),
and that the obtained & profile is consistent with the £ — & model in the actual
simulation.

An alternative method is to determine e from a mixing length, as suggested
by Jones (1994):
3/4p3/2

I

Im
where the measured profile for £ has to be introduced. The problem is then
shifted to the determination of a suitable profile for the mixing length /.. In the
work of Merci et al. (2002), the following expression is suggested:

()

E =

[
B, = (1~ exp(-2x 10%(y/Dn)*)N(1/15 = (1/2 = y/Dp)"), @®)
where y is the normal distance from the nearest solid boundary and Dy, is the
hydraulic diameter.
In this work, the first method has been used to determine the & inlet profile.
At the axis, symmetry conditions are imposed: radial derivatives are set
equal to zero for all quantities, except for the radial velocity component (which
is set equal to zero). At the outlet and side boundary, the axial derivatives are
set to zero for all quantities, except for static pressure, which is prescribed to be
atmospheric.

5. Influence of different aspects

As mentioned earlier, the aim of the paper is not the comparison of numerical
results to the experimental data, but rather a comparison between the
numerical results themselves, without judgement of the applied models.

5.1 Numerical scheme

The accuracy of the numerical scheme is very important. Comparisons are
made between the results obtained with a first-order upwind scheme for the
convective fluxes, and results obtained with a second-order accurate
upwinding. The latter is a second-order accurate AUSM-like upwind scheme,
fully described in Merci et al (2000) and Vierendeels et al (2001) for
non-reacting flows. It is readily extended for reacting flows. For convective
fluxes, velocity upwinding is applied, with values at the cell faces extrapolated
with the van Leer-k method. The value k = 1/3 is chosen, so that the third
order accuracy is obtained on an equidistant orthogonal grid (and second-order
accuracy on more general grids). The acoustic and viscous fluxes are
discretized centrally (second-order accurate). Artificial numerical dissipation
for pressure is added into the mass flux in order to avoid pressure wiggles in
the steady-state solution. This dissipation is small and well controlled. When a
first-order accurate upwind scheme is used for the convective fluxes, it must be



kept in mind that the numerical artificial dissipation is also introduced, simply
by the discretization. The dissipation can be large and is basically
uncontrollable. As mentioned by Pope (2000), the leading order truncation
error in one-dimensional convection-diffusion equation is equivalent to an
additional viscous term, with “numerical” viscosity:

1
Mnum = épUh’ ©)

where / is the grid spacing.

In Figure 1, profiles are shown for the mean velocity and mixture fraction on
the symmetry axis. Their inverses are also shown, in order to focus on the final
decay. The impact of the order of accuracy of the numerical scheme is
important. Large differences occur for x/D, > 20 in the mean velocity, and
consequently also in the mean mixture fraction profiles. The reason is the
uncontrolled large numerical artificial dissipation near the inlet boundary when
first-order upwinding is used for the convective fluxes. Indeed, due to the high
velocity for small x, and the relatively low value of the eddy viscosity, the
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Figure 1.

Axial profiles of the
mean velocity and
mixture fraction
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Figure 2.

Axial profiles of pk (left)
and the eddy viscosity
(right). Symbols: waum
(equation (9))

Table 1.

Position of
stoichiometric
conditions at the axis

numerical viscosity affects the results. In Figure 2 (right), a measure for the
numerical viscosity (9) is shown. For %, the radial grid spacing at the axis is
taken, while the local mean axial velocity is used for U. This diffusion is in the
axial direction, where convection is dominant. Still, it is indicative that the
numerical viscosity is not negligible, particularly for small values of x (say
x < 20D,). This is seen in the profiles of pk. In Merci et al (2001) it is
demonstrated that the decay in mean velocity is governed by the turbulent
shear stress at the symmetry axis, and that pk is a good measure for this
quantity. In Figure 2, a completely different behaviour is observed when a first-
or a second-order accurate scheme is applied. Due to the large amount of
numerical dissipation for small x, the turbulent shear stress does not increase
as quickly as with the second-order scheme. As a result, the decay of the mean
velocity (and thus of the mean mixture fraction) is postponed, as show in
Figure 1. This is reflected in a serious discrepancy in the prediction of the
position of stoichiometric conditions (Table I). There are also differences in the
final decay, due to differences in the values for the eddy viscosity (Figure 2). It
is noteworthy that the decay is slightly steeper with the second-order scheme
than with the first-order discretization, in contrast to the higher numerical
diffusion in the latter. The reason is found in different evolution of the eddy
viscosity, which dominates the numerical diffusion in that region and which is
higher with the second-order scheme (Figure 2). To conclude, it is noted that the
difference in the behaviour of pk is also observed in the axial profiles for the
mixture fraction variance, which is shown in Figure 3; the increase is
postponed when a first-order accurate scheme is used.
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Figures 4 and 5 show the radial profiles at x/D, = 30 and x/D,, = 45 for the
mean velocity, mixture fraction and temperature, and for the rms value of the
mixture fraction fluctuations. The radial “shape” is presented for these
quantities: they are divided by their value at the centerline at the considered
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Figure 3.

Axial profiles of mean
temperature (left) and the
rms value of the mixture
fraction fluctuations
(right)

Figure 4.
Radial profiles at
x/Dy=30
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Figure 5.
Radial profiles at
x/D,=45

axial position. Again, large discrepancies are observed when the order of
accuracy of the numerical scheme is altered: there is a clear difference in the
spreading rates for both U and & Therefore, it is dangerous to claim (see http://
www.ca.sandia.gov/tdf/Workshop/Submodels.html) that the value ¢, = 1.8
provides a correct spreading rate, without specification of the applied
numerical scheme. The profiles for the mean temperature reveal the large
differences even more. In Figure 4, a temperature difference of 180K is
observed at the axis, while the larger spreading rate with the second-order
accurate scheme is also seen in Figure 5. For the mixture fraction variance, the
differences are not negligible, either, which is best seen in Figure 5. It is
noteworthy that the spreading rate with the second-order scheme is larger than
with the first-order accuracy, in contrast to the higher numerical diffusion with
the latter. The reason is again found in the differences in the eddy viscosity.

5.2 Boundary conditions
The influence of the inlet boundary conditions is very large, as discussed in
Merci et al. (2002). Since the complete discussion has been done in that



reference, attention is focused onto the outlet boundary conditions. Although
they are straightforward (prescribed atmospheric static pressure and zero axial
derivatives for all other quantities), it is possible that the results are affected if
the axial derivatives in reality differ from zero at the position of the outlet
boundary. Figures 6 and 7 show that this is not the case. It is observed that
moving the outlet boundary from x = 140D, closer to the nozzle exit (x =
80D,), does not affect the simulation results upstream. All profiles indeed
collapse. Consequently, it is not necessary to use a very large computational
grid.

5.3 Grid refinement

In Figure 8, axial profiles are shown for first- and second-order accurate results
on the basic grid (113 X 89 points) and on a refined grid (225 X 89 points).
Clearly, the second-order accurate results are grid independent (all curves
practically collapse). Although the first-order accurate results are also at first
sight grid independent, this is not completely true. As mentioned earlier, the
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Figure 6.

Comparison of axial
profiles for the basic grid
(140D, x 25D,)) and a
shortened grid

(80D, X 25D,,)
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Figure 7.

Comparison of radial
profiles at x/D,=45 for
the basic grid

(140D, x 25D,)) and a
shortened grid

(80D, X 25D,,)
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numerical viscosity (9) is important in the first-order accurate simulations
(Figure 3). Consequently, the influence of grid refinement is visible, particularly
in the profile for pk, which is the most sensitive. It is seen that the profile on the
refined grid starts to tend toward the grid independent curve of the
second-order accurate scheme, since the numerical viscosity is divided by a
factor of two (equation (9)), where % is divided by two due to the grid
refinement). Although it is hardly visible, the other profiles also tend towards
the second-order profiles. Thus, the explanation of the differences between the
first- and second-order scheme in Figures 1 and 2 as described earlier, which
were based on Figure 3, are supported by the observations in Figure 8. To
conclude, it is noted that, in order to obtain really grid independent results with
a first-order accurate scheme, the grid must be much more refined than the
second-order scheme. However, the variations in the other curves in Figure 8
are small, so that the results seem grid independent (and are often claimed to be
o), although they are really not. To judge on grid independence, sensitive
quantities have to be observed.
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6. Conclusions

The influence of computational aspects on numerical simulations was
quantitatively investigated for a turbulent piloted jet diffusion flame. The inlet
boundary conditions, particularly for the dissipation rate e, are of crucial
importance to obtain the reliable results (Merci et al., 2002).

Apart from the inlet boundary conditions, the order of accuracy of the
numerical scheme has a large impact on the calculation results, both in terms of
axial and radial flame structure. It is important to use a sufficiently accurate
spatial discretization, in order not to affect the simulation results through
uncontrolled artificial numerical dissipation.

Unlike the inlet boundary conditions, the outlet boundary (in particular, its
axial position) has very little effect on the simulation results.

It has been demonstrated that care must be taken when results are claimed
to be grid independent. In particular, first-order accurate results may seem grid
independent when the grid is refined by a factor of two, when relatively
insensitive quantities are investigated. In reality, they are not grid independent,
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Figure 8.

Comparison of axial
profiles for the basic grid
(113 x 89 points) and a
refined grid

(225 x 177 points)
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unless an extremely fine grid is employed. Results obtained with a
second-order accurate scheme, on the other hand, have been shown to be
really grid independent.
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